
Journal of Statistical Physics. Vol. 74. Nos. 3/4. t994 

Generalized Moment Expansion for 
Nonadiabatic Transition Reaction 

Dah-Yen Yang ~ 

Received May 5, 1993.'final October 11, 1993 

We discuss the generalized moments of the nonadiabatic transition reaction by 
using the stochastic Liouville equation for the study of outer-sphere electron 
transfer in polar solvents characterized by Debye dielectric relaxation. We obtain 
an approximate expression for the generalized moments which incorporates the 
width of the transition with arbitrary initial condition far from equilibrium. For 
low barriers, we derive an analytical expression for the rate corresponding to 
harmonic potential surfaces in the overdamped regime. For Fokker-Planck 
operators of Smoluchowski type, we introduce a new method to solve all of the 
generalized moments by using the eigenfunction expansion method. 

KEY WORDS: Electron transfer theory; projector formalism; Fokker- 
Planck equation; Zusman equation; generalized moment. 

1. I N T R O D U C T I O N  

Since the pioneering work of  Marcus  and Hush,  ~t~ electron transfer (ET) 
react ions have a t t rac ted  a lot of at tention.  Solvent dynamic  effects on the 
rate of electron transfer react ion have been the focus of exper imental  (2) 
and theoret ical  investigations. When  the microscopic  electronic processes 
are faster than the medium dielectric relaxation,  the observed ET rate 
is de termined by the longi tudinal  dielectric re laxat ion time rL. This 
solvent-control led ET has been demons t ra ted  by Kosower ,  Hupper t ,  and 
co-workers.  (2) The theory of solvent-control led ET was first s tudied by 
Zusman,  (3) using the stochast ic  Liouvil le equat ion method.  Subsequently 
the solvent-control led  ET has been developed by using the generalized 
Langevin equat ion,  (4) the mean-f i rs t -passage-t ime approach,  (s) and path  
integral  method.  (6) Mos t  of them are based on the assumpt ion  of a high 
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barrier and thermal equilibrium initial condition. The ET rate assumes an 
Arrhenius form k E T = A  e x p ( - E , / k T ) ,  where E,  is the activation energy. 
The preexponential frequency factor A is determined by the electronic 
coupling constant, the reorganization energy, the driving force, and ~L. 
This implies the ET rate has a different time scale from a medium dielectric 
relaxation and can be described in terms of single-exponential decay. 
However, some chemical processes have little or no intrinsic barrier, e.g., 
some isomerization reactions, ET, and the primary charge separation step 
in photosynthesisJ 7) The dynamics of activationless transition reactions 
differ considerably from those of high barrier conditions. Without the high 
barrier, the time scale of transition cannot be separated. The steady-state 
flux across the transition region cannot be obtained. The general time-inde- 
pendent rate constant is not valid. This implies that multiexponential decay 
relaxation processes may occur. The lowest nonzero eigenvalue of the 
kinetic equation may not be sufficient to describe the reaction, because the 
eigenvalue spectrum may be dense. Since the aetivationless transition is 
fast, the relaxation processes may depend on the initial condition. To 
explore the activationless and low-barrier transition reaction, short-time 
and long-time rates should be considered. 

The solvent-controlled reaction rate obtained by Zusman in the 
normal regime, for sufficiently high barrier, is given by 

kE-~ = kuAl{  1 + ~AI[  1 -- ( dE IE r )  2] } 

where kuA is the nonadiabatic rate constant, 

kuA = [2~ V~2/h(47zErkT)1/2] exp( - E A / k T )  

while XA is the adiabaticity parameter 

x A = 47t V~2 T L/hE r 

dE  is the driving force (i.e., free energy gap), V~2 is the electronic coupling 
constant, and Er is the reorganization energy. The result is valid for the 
localized transition in both the normal and inverted regimes, but cannot be 
utilized for the activationless regime. 

Less attention has been paid to activationless and low-barrier trans- 
ition. Sumi and Marcus 15~ and Zhu and Rasaiah tSI studied the Brownian 
motion on the harmonic potential surfaces with a Gaussian transition kernel 
and a thermal equilibrium initial condition. Rips and Jortner c9~ studied 
the long-time transition rate for a localized transition. In our previous 
work I~~ Zusman's equation has been extended to include delocalized 
transitions. Our results showed the validity in the inverted regime with the 
delocalization width up to the average length of the potential well. In 
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this paper we apply the Zusman stochastic Liouville equation to derive the 
generalized moments for short-time and long-time solvent-controlled rates 
of nonadiabatic transition reactions to include the low-barrier regime. In 
Section 2 we obtain a reduced Zusman equation which includes a delo- 
calized transition. The generalized moments expansion of the probability 
density is defined. A projection operator method is applied to obtain the 
high-frequency moments with arbitrary initial conditions far from equi- 
librium. Application to the activationless case is also analyzed. To get the 
exact results of these moments, the four coupled equations for the diagonal 
and off-diagonal density matrix elements must be included. We introduce 
an eigenfunction expansion method in Section 3; the four coupled equa- 
tions are expanded in a basis set of eigenfunctions of the Fokker-Planck 
operator for dynamics on averaged harmonic potential surfaces. The result- 
ing matrix for the evolution of the density matrix expansion coefficients is 
a block tridiagonal matrix. The blocks are a 4 x 4 matrix corresponding to 
the four elements of the density matrix. An efficient way of solving the 
probability density fluctuation is based on a careful analysis of these tri- 
diagonal equations with the probability conservation argument. The article 
is concluded in Section 4 with numerical results. 

2. THE M E T H O D  

2.1. Zusman Equat ion 

Let us consider the transition between two shifted potential surfaces 
V~ and V22 which correspond to the donor and acceptor states, respec- 
tively. The transition between the diabatic potential surfaces is induced by 
the electronic coupling constant V~2 (see Fig. 1). In condensed phases, 
these potential surfaces are coupled to a heat bath. The time evolution of 
this system obeys the Zusman equation (for a detailed derivation see 
ref. 10) for the coarse-grained density matrix Po (i, j =  1, 2) 

~tPll =LllPll--i (P2J--Pl2) 

3 Vj~ 
3i  p ~  = L ~ ; ~  - i - - ~  (p,2 - p~, ) 

(1) 
3 V i i -  V22 . V~2 
-~ p'2=L~2p'2-i h P,2-l--h-(P22--P,,) 

3 V11- V22 V~2 
~p21=L21P21-i h P21--i--~--(Pll--P22) 



634 Yang 

> 

A B C 

Reaction coordinate X 

Fig. 1. Schematic illustration of the reactant (well 1) and product (well 2) potential energy 
surfaces for the nonadiabatic electron transfer reaction in the text: (A) normal regime; 
(B) activationless regime; (C)inverted regime, Notation: a = 4rL V i J h ,  2 =r Z t ,  fl = I / k  B T, 

S =  �89162 L, and P =  - z l E / h o J  L. 

where h is Planck's constant and Lo is the Fokker-Planck operator. Here 
L o corresponds to the diffusion on surface i, and L~_, = �89 + Lz2) corre- 
sponds to the diffusion on the averaged potential surfaces �89 V22 ). 
These semiclassical equations describe the solvent dielectric fluctuation as 
a low-frequency fluctuation with energy smaller than kBT. The diagonal 
elements p~ and P2z are the probabilities of finding the system in the 
initial and final potential wells. The diffusion motion is slow, since it is 
activated by thermal energy. The off-diagonal terms include not only the 
diffusion motion, but the high-frequency quantum transition behavior 
[ i(Vz2-V~,)/h term]. Equation (1) can be reduced to two coupled equa- 
tions by invoking the assumption that the off-diagonal element P~2 varies 
with reaction coordinate much faster than the diagonal elements p~ and P22. 
The reduced Zusman equation is 

0 
-~p= [ L -K ]p  (2) 

P= [PII, P22] r 

L 2 2  

[ ' -I] K(x)-- 2 Re Kl 2 (X  ) - -  1 

with 



Nonadiabatic Transition Reaction 635 

and 

t h )  _~  
dr G 2 ( x , ,  r I x, O) 

where G ~(xl ,  r I x, 0) is the propagator [O/& - L~2 + i( V22 - Vl~)/h] - t 
The G~ propagator describes motion in the well _ _~(V~ + Vz2) and quantum 
transition between V .  and V22. K(x)  depends on the reaction coordinate 
and includes the information of delocalized transition. For a closed system, 
the forward k ~2 and backward k 2t rate constants are defined from the 
population equations, 

a--t ~ = k '2 -k2'JLNsJ 

= - fNq 
LN~,J 

with 

f ~ f~ N A= dx pl t (x ,  t), N s =  dx p22(x, t) 
- o o  - o o  

the populations of states A and B, and NA + N8 = 1. By using projection 
operator techniques on Eq. (2), we obtain an expression for the recrossing 
long-time transition rates 

k 12 _ 
k ~  

1 12 zl (4a) + k ux / k o I  q- kNA/kD2 

k2~ _ k~A 
12 21 (4b) 

1 + kNA/kol  + kNA/kD2 

where 

f 
oo 

k~A = dx Re Kij(x) g , (x )  (5a) 

k ; i  I dt o . t) g T l ( x * )  - 1] (5b) = [ G . ( x  Ix*, 

Here Re Kj2(x)  is the real part of the time integration of Gi2 and x* is the 
crossing point, gi(x)  is the equilibrium distribution in well i. k~A describes 
the motion along the surface as modulated by the surface splitting and a 

822/74/3-4-12 
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delocalized transition. The rate koi characterizes the stochastic motion on 
the ith well. It also accounts for the deviation from equilibrium in the well 

,7 is sufficiently that may occur if the crossing motion, characterized by kNA, 
fast. 

2.2. Generalized M o m e n t  Expansion 

Define the populations as the integration of probability density over 
space: 

Q(,) = f %  dx~ pl l (x ' t )  I-Q|(/) 1 
Lp22(x ' t) 1 = (6) - L Q d t ) J  

with the probability conservation Q~(t) + Qdt) = 1. Since our system is a 
closed system, the equilibrium distribution (i.e., the background) 

Qe= dx -pll(x, t 
_ ~  _p22(X, t 00) (7) 

has to be subtracted from the population Q(t). Also, define the fluctuation 
of populations via 

6 Q = Q ( t ) - Q  ~ (8) 

then lim,_o~ fiQ(t)=O and Qe is unknown here. In terms of the Laplace 
transform 

f? 60.(s) = dt e -s' 6Q(t) (9) 

Eq. (8) has the following asymptotic expansions for low and high frequencies: 

&O.(s)= fo  dt ( 1 -  st + l s2 t2  . . . .  ) &Q(t) 

Io ' S Io = d t f Q ( t ) - s  d t t f Q ( t ) + ~  dtt26Q(t)+ ... 

1 s2 &O_"(s = O) + . . .  = ~O.(s = O) + s ~O_'(s = O) + ~ .  

= (  ~~ . . . .  ) [ -  111 for s--*0 (10) 
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and 

60(s) = J o  dt e -S ' [Q( t ) -  Q"] 

f/ = d t e - "  dx [e - (L -K) 'p (x ,  0 ) - Q  e] 

= s - ' [ Q ( O ) - Q e ] - s  -2 d x ( L - K ) o ( x , O )  

+ s -3 d x ( L - K ) 2 p ( x , O ) +  . . .  
- -  o o  

=s- l#o- -S-21al+s-31a2  . . . .  for s--. c~ (11) 

where the expansion coefficients, i.e., the generalized moments, are given by 
to, Zl, ~2,... and/~o,/~,... �9 

From the definition given in Eq. (10), the mean first passage time and 
the averaged survival time are 

and 

fo "QI')--[ ~ s J s = o  

f2 dt t a Q ( t ) =  --~s O_(s) s d,=o 

(12) 

(13) 

respectively. Applying the known initial conditions S_~ dx , O I I ( X  , t = 0)= 1, 
P22(x, t=O)=P~2(x ,  t=O)=p2~(x ,  t = 0 ) = 0 ,  and the boundary condition 
~_~  dx L(. )=  0 to Eq. (11 ), we obtain the moments corresponding to high 
frequency as 

IJo = Q(O ) -  Qe 

f 
~ 2  

t~l= d x K p j l ( x , O )  
- -  o o  

f 
c c  

It 2 = dx K(L  - K) p(x,  O) 
o o  

(14a) 

(14b) 

(14c) 

By using projection operator techniques on Eq. (2) and comparing 
with Eq. (11), we can obtain the moments corresponding to low frequency. 
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Define the projection operator P = g [. dx  and its complement Q = 1 -  P, 
where g is a 2 by 2 diagonal matrix of equilibrium distribution at each well 

gi = e-PVii dx  e -~V", i = 1, 2 

Applying P and Q to the Laplace transform of Eq. (2), we find that 
standard projection operator manipulation leads to 

~ ( s )  = g - ' { s  + p K  + P K [ s  - Q ( L  - K ) ]  -1 Q ( L  - K)}  - '  

x {Pp(0) - P K [ s  - Q ( L  - K)] -1 Qp(0) } (15) 

The first term of Eq. (15) is analyzed with the use of the identity 

(s - Q L  + QK)  - t = (s - a L ) - I  _ (s - Q L ) - I  QK(s  - Q L  + Q K ) - t  

and the boundary condition P L  = 0. Iterating this identity, we have 

(s - Q L  + O K) - ~ = C ~ - Cs~ ~ + . . .  (16) 

with C ~ = (s - Q L )  - 1 
We solve Eq. (15) with the consecutive approximation (see ref. 10) in 

which the dynamics of diffusion and reaction are disentangled, i.e., 

g - ' { s +  P K +  P K [ s -  Q ( L - K ) ] - '  Q ( L - K ) } - 1  g 

= [s(1 +g-t(~~162 -I  (1 + g - ~ ~  (17a) 
and 

g - I p K [ s  -- Q ( L  - K)] - '  Qp(O) 

= K *q(s + g-l~~ g -  i COQp(O) (17b) 

Using the identity given in Eq. (16) and the approximation given in 
Eq. (17), we obtain the Laplace transform of population 

~(s)--  (1 +g- '~~ + g - ' ~ ~  + K ~q] -~ 

x [ I  d x p ( O ) +  K * q ( l + g - ' ~ ~ 1 7 6  (18) 

where 

] 
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[ K "q = k ~  --kNA 7 (21) 
k~AJ - k ~  5, 

Go = (~~ x*, s ) -  f dy G~ x*, s) g(y) (22) 

Finally, the contribution of Eq. (18) gives 

0~(s) 1=-- O_,(s) 
s 

- -  - - I ~ , 0  --12 I / ~ 0  k 2 1  I 12 21 --1 = [$2( 1 "t-gl OIIK,V,4 + g {  ~22"-NA, +s(kNA + kNA)] 

x k ~ [ 1 - s g ? ' G ~  (23) 

In the long-time limit, s ~ 0, 

~0 s; x*) -- f dy ~~ s; y, O) gi(Y) ~O(x,, 

f: f: = dt EG~ ' - 1] - s  dt tEG~ ' -  1] 

1 
f :  dt tZ[G~ g 7 1 -  1] + -.. s 2 +~. 

k(o)-' ek(1)-' I 
= " D '  - -  o . .  D i  31- ~ . .  s 2 k ( ~ :  - 1  "~- " ' "  

where we define the diffusion moments as 

: dt t"[G~ g7 ~ - 1] =k~]-'  (24) 

For the zeroth-order approximation, 

g -  l~.O ~ t.(o)-' (25) 
i " ~ i i  " ~  n ' D i  

k 12 
02(s) - s(s + k 12 + k 2') (26) 

This is the result of a phenomenological first-order rate law with one 
relaxation time 1](k12 + k21). Using the singularity analysis of 0.(s), we find 
the equilibrium distributions 

k21 kl2 
Q~-k12 +k21, Q~=k12 +k21 (27) 
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and we obtain the fluctuation of populations 

3Q2( s ) -  k ~ [ 1  +sg?lCr~ I - P , I ) ]  kG 
12 s[kNA+k2~+s(l~_-l~,o ,_12 - l = o  21 - g l  UII'~NA+g2 G22k,vA)] 

and 

601 = -60_2 

Finally we have all of the moments, e.g., 

e ini - I  t0 Q2(ko, ol - ~), z = (kI2+k21) - I  

e ( ini -1  e - - I  e --1 "t 

k } , 1 = Q 2 - k , , o i + Q l k l , o 2 + Q 2 k l , o , +  "r2 kio~,io, 

where we have used the series expansion 

g?lC~ - - g l ( X * ) )  = ~ kn, m(ini-I --s)n 
n = 0  

The other higher moments can be obtained in the same way. 

. 1 2  21 kNA +kNA s 

(28) 

(29) 

2.3. Relaxat ion Times 

The first-order kinetics that we used in ref. 10 is based on the assump- 
tion that the reaction starts in a near equilibrium configuration and the 
equilibrium state is approximately maintained during the reaction. In the 
activationless regime, the rate is fast and the initial configuration is usually 
far from the equilibrium distribution. The reaction rate (O/at) Q2(t) should 
vanish initially, approach some maximum rate at later time, and finally 
decay to zero. This needs a multiple-exponential decay time description. 
A polynomial expansion of 60_2(s) in terms of low frequency or high 
frequency cannot give us an accurate description, and the difficulty of using 
Mori's relaxation theory is due to the non-Hermitian form of the Fokker--  
Planck operator. We will study this problem in a future work. In this 
section we evaluate two relaxation times from the known information of 
the moments: 

1. Probability conservation, i.e., Ql(t) + Q2(t) = 1. 

2. (c3/at) 02(0 I,=o =0.  

In our harmonic oscillator potential surface model, the initial conditions 
P12 =P21 = 0 imply this condition (see Section 4.3). 

3. ~ dt 6a(t) = r0. 

4. ~ dt 60(0=r l .  
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Assume a two-relaxation-time description of the population in well 2, 

Q2(t) = Q~ + ae -~,' + be -).2' (30) 

With the conditions 1-4, we obtain 

1/21 1/2.2 
a = Q~, b = Q~ 

1/2.1- l/2z 1/2~- 1/2-z 

and 

1 1 to (~, 3 r~ "~'/z 
2,,z 2 ~ z +  Q-~z 4(Q~)2) (31) 

In the following section, the application of t 0, z~ and 2t, 22 to specific 
models will be discussed. 

2.4. Appl icat ion to Harmonic Potential  Surfaces 

In this section, we obtain an approximate rate constant expression 
given in Section 2.3 with a special model of harmonic potential surfaces. 
With a given initial distribution (delta function and Gaussian distribution 
function), we evaluate to and ~ .  The harmonic potential surfaces are given 
in Eq. (42). The stochastic processes correspond to overdamped Brownian 
motion, i.e., 

L i i = D  O--~-(O+fl~---xax Vii) , / = 1 , 2  

and 

L12 = L21 = � 8 9  + L2z) 

Here D is the diffusion coefficient and fl = 1/kB T. 
The exact solution of the propagator of the off-diagonal term is t~2) 

G21(x, t [ xi, 0) = (2• DTL) 1/2 (1 - -  e-2t)  I/2 exp Dr c 1 -- e -z '  

I- _, l l _,)]}2 
{ 2 D ~ ( 1 - e - ' ) - - i L x - x i e  - ~ X o (  - e  x 

- D z L t + i  x - x ~ - - ~ X o t + a t  (32) 
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where a is the crossing point and y=k~ox o is the force difference at the 
crossing point. The use of Eq. (32) in Eq. (5a) yields the nonadiabatic 
transition rate 

t'a  2 1 k~5 = 2 \-~} -~c f dt dx dx~ Re G2~(x, t l x~, 0) gt(xi) 

= 2  - - R e  dtexp - 2  ( - l + t + e - ' )  

• [(/3aG,~)'/2+(/3aG~)'/2] 2 

2 + i ~--~-~ { [(/3 aG, ~ ),/2 + (/~ AG~' )1/212 ( _ 1 + t + e - ' )  

- 2[/3AG~ +(/3dG~ . /3dG;)~/2]t})  

( 4 ) 2 1  { 2 ( 2 2  ) = 2 - -  Re exp - i 

[2(/3 d G ~ ) l / 2  (/3E~)~/2]z t B-UT(it, B) (33a) • 

, , g  

where 

B = 2(x  + y)2 _ i - -  (x  + y )  
/3hoJ, 

It= ~ 2 ( x + y ) Z + i ~ - - ~ z ( y - - x )  

x=/3~JG~, y = / 3 a G ~ - 2 ( / 3 d G ~  /3Er)'/2+/3Er 

g (_I) , ,  B .+,  
?(it, B ) =  

n = 0  

and 

kuA = 2 dt dx dxi Re Giz(x, t I xj, O) g2(xi) 

(4?5 r ( = 2  Re j dt exp - 2  ( - 1  + t + e - ' )  

• [( /3AG~)' /z+(/3AG;) ' /z]  2 

- i - - ~  L {[(/3AG~)'/2+(/3zIG~)'/z] 2 (1 + t - e - ' )  

- 2[/3AG~ +(/3dG~ ./3AG~)'/'-]t}~ 
/ 
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where 

= 2 ( a \ Z l R e e x p f  2 ~-4) -~L [ 22 i) 

X [ 2 ( f l  A G ; ) I / 2 - {  - ([~Er)1/212 } B-I'~(~, B) 

2 )  ). 
#= ~ 2(x+y)2-i  fl--~wa(Y-X) 

x = [(/~ ~G~ ),/2 + (/~Er)~/212, y =/~ a G ;  

The diffusion rate constants on each well are 

k / , ~ -  - ,  =o - g l  Gll 

f dt e-"[G~ x*, t) g?l(x*) 1] TL 

where 

(33b) 

! 

- o, ol--skl.ol+ s2k2.~l 

(34a) 

B(x, y) = ;  ,,)-[o ( - 1)" y(y - 1).. .  (y - n) 
= n !  ( x + n )  ' 

= beta function 

r ~, x, y )  = 
(~),. (/~),, 

. . . .  o (y),,+,m! n! ] x ] < l  

= degenerate hypergeometric series 

(a)o= 1, (a) , ,=a(a+l) . . . (a+m-l)  

y > 0  

and 

k/,~ - ,  =o = g 2  G-'2 " 

= x L [ e x p ( f l d a ; ) B ( ~ , s ) r  5, - 1 , - f l  --~] 

(34b) 
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Introducing a series expansion of Eq. (34a), we find for the diffusion 
moments 

k -! = g i - ! ( x * ) [ - I ( O ) +  S(�89 J G ~ ) ]  O, DI 

1 
k,-;! = g (-'(x*) ,~o -~" ( - f l  Ja  ~r )" J,(n) 

(35a) 

(35b) 

where 

1 
l(n) = - I n  2 + 

. , = j  m -  1 /2  

=0.577215 + In  2 + ~ ( n + ~ )  

~(x) = Euler's psi function 

x" S(x) = ( -- 1)"- 1 I(n) n-~. 
n = l  

J,,,(n)=rn! k~=l~, n+~ -k+ n+2 k-Z (--1 

'n+ l/2)-k(n+ l/2)~-2 } + (-1)k+'(k+i) - ' ' -I  i.,,,=l k! i! 

--1 --! ko.o2 and kl.n2 can be obtained from Eq. (35) by replacing fl AG~ by 

When the initial distribution is a delta function, 6(y-yo), the 
numerator of Eq. (23) is given by 

g~-,(~o (p _ g ) = g - ' ( x * )  f dy (~ t~ (x *, s I y)[b(y  - Y o ) -  g(Y)] 

= ~ (-s)" i.,-, 
,,=o---~(-. k,,.o, 

=fdte-"{(1-e-2',-'/2exp[~(x*-y~ j - l }  

( 2 )  ( 1 oZ ) _1 for = 2 s / 2 -  IF exp -- ~ y D _ s ( y o ) -  s 

where F =  gamma function, De(z ) = parabolic cylinder function. 

(36a) 

X * = 0  

(36b) 
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exp[- �89 2] 

- y o e - ' ) 2 ]  - 1} (37a) 

and 

2.5. L imit ing Case 

The general expression from Eqs. (23) and (24) gives good numerical 
results compared to the exact numerical calculation in Section 3. In this 
section, we give some limiting expressions of k%A and ko, in the over- 
damped regime. 

The forward and backward nonadiabatic transition rates are given by 

kIN 2 ~ (4)21flh('OL(2T~ \[~Er/] t i E r  / d ( 3 8 a )  

k ~'4 = "--~L ~ \tiEr] - -~ fiE, I tiEr / J 

In the activationless regime, with fl AG~ = 0 and fl AG~ ~> 1, we have 

k '2 _ffa,~Z 1 flhO~L( ~ ~,/2 
HA -- \ 4 )  Z"-~L -" '-~ \ f l-~--f  J (39) 

and 

k2u~= z-~ - ~  \~---~--fJ exp ( - f l  A G ; )  (40) 

For the Gaussian initial distribution function (2n)-~/2 
the numerator is 

g ~ ' C ~  

= ~  y~ y ,~  y o ) -  s for x * = 0  (37b) 

where y(ct, x ) =  incomplete gamma function. The diffusion moments are 

ko.D l.ini -I  = 21 [ E i ( - x )  - In x], x = ~Yol 2 

where Ei = exponential integral function, and 

1 o o (  , 2 . ,  
-- ~yo,I 

ini-I ~4n=l n2n" kLol ~ ) 

Equations (33)-(36) give all of the factors in Eqs. (28) and (29). 



646 Yang 

The diffusion rate constant is given by 

ko~ = r L  In 2, f lz/G~ = 0  (41a) 

= e x p ( f l z / G ~ ) [ - l ( O ) + f l z / G ~  I(l)],  f lz/G~ ~ I  (41b) 

=~L\~--~--~j exp(t~z/6,*), pz/G,*~>I (41c) 

Note that the diffusion rate is a constant in the activationless regime and 
depends on fl Z/G~ linearly in the low-barrier regime. 

3. N U M E R I C A L  M E T H O D  

In this section, we calculate the generalized moments by solving the 
four coupled equations given in Eq. (1). We use the standard harmonic 
oscillator model as the potential surfaces 

Vii = �89 2 (42a) 
1 V22 = ~ m w - ( x -  Xo) 2 + LIE (42b) 

where Z/E is the driving force (Z/E<0 for an exothermic process, and 
z/E> 0 for an endothermic process) and Xo is the horizontal displacement. 
The stochastic process corresponding to overdamped Brownian motion is 
the Smoluchowski operator 

L"= D-~x -~x fl ~x V" ' i = 1 , 2  

and 

LI,_ = L21 = �89 + L22) 

It is useful to transform the coupled equations into density matrix 
element combinations and to introduce a basis set expansion of the density 
matrix with basis function proportional to Hermite polynomials: 

P + = P" I- P22=,T'o a~(t) Y 

R e p ~ 2 = ~ ( p , 2 + p ~ 2 ) =  ~ b2 r .  Y 
n = 0  

Imp12=~ii(P12--p12)= b~r,, Y 
t l = 0  

(43a) 

(43b) 

(43c) 
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The argument y is equal to x -  �89 and r,, is the right eigenfunction of the 
Fokker-Planck operator LI2, i.e., 

c3 11  /1,, r,, I ~ + ( x - - ~ X o ) - ~ x +  r .=  (44) 

where 

r"=(2"n')-'/Z(l/2~r)'/4e-""/2t-I ( ~ 2 )  �9 _ , ,  ( 4 5 )  

and the eigenvalue #. = - n ,  n = 0, 1, 2 ..... We define a dimensionless time 
[= DflmwZt = t/zL, where z L is the longitudinal dielectric relaxation time of 
the overdamped oscillator, and a dimensionless coordinate .~ = (mo92fl) ~/z x, 
where (mco2fl)- 5/2 is the average width of the oscillator surfaces. It is useful 
to transform the Zusman equation to a set of first-order differential 
equations 

O 1 
a + = / l . a  + - ~  Xo ~ a.-_, (46a) 

&t 

O a~-=/J,,a~- 1 + 
&t - -~ Xo x/~ a,, _ , - abe, (46b) 

O 
Ot b'+ = I~"b'+ + b x/~ b,7_ ~ + b(n + 1) '/z b,.+ , - ba.,.b Z, (46c) 

1 
O--b; = p , b ;  -bx / / -nb~+_ , -b (n+  1)~/2 b~++ +btr,.b + +~aa,7 (46d) Ot 1 

where 

4VI2VL . ['2E./hOgL'~ I/z 
a=---z-, ) 

Er is the reorganization energy, and ay= a - � 8 9  and a is the crossing 
point. Applying the Laplace transformation to the population fluctuation 

6~2(s) = ZL dt e-S'[Q(t)  - Qe] 

l ( 2 n ) ' / ' z L ( 6 ~  + & a o ) [  11] 
2 - - 

1 
= ( z ~  + ~  s2~2 . . . .  ) [ - I ]  (47) 
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we obtain 

r,, = rz( - 1 )" ~ 6Q(s) 
OS 

O . 1  ] 
]" F 1'2rt] TM (6t~ + 6~ o ) 

= ~ L ( - 1 .  ~s"L~" " - 

Equation (44) can be written in matrix form as- 

(48) 

where 

and 

0 
Ot c. = Q~c,,_l + Q,,c. + Q,+c,,+l (49) 

c .=(a+,as  r, n = 0 .  1,2 .... 

a ; - =  

m 
0 

-~ xo,5 
0 

0 

0 
mF/ 

0 
�88 i 

--/,/ 

Q =  o 
0 

0 

Ei ~ 
Q + =  0 

0 
0 

- • 1  Xox/~ 0 0 - 

0 0 

0 0 

o b~/~ o j 
0 Oa 

-- n ~nO'y 

bo'. 

o o] 
0 0 
0 b(n + 1)1/2 

- b ( n +  1) 1/2 0 

0 

b~  
0 

(50a) 

(5Oh) 

(50c) 

In solving Eq. (48), our procedure is to find Qe first. Then we use Qe to 
solve 6 ~  and to find 6a~', and so on. 

At equilibrium, Eq. (49) is 

Q,Tc._l + Q . c . + Q + c . + t = o  

The Laplace transform of Eq. (51) gives 

s~. - c.(O) = Qs + Q.~. + Q+?.+ ,  

(51) 

(52) 
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Subtracting Eq. (52) from Eq. (51) and taking the limit s ~ 0, we obtain 

Q,7 6Cn-I + Q , , f g . + Q  + (~?n+ 1 =Cn(OO)--Cn(O) (53) 

where 
c.( oo ) 

6 7 .  = ? .  - - -  
s 

Differentiating with respect to s in Eq. (53) and letting s---, 0 yields 

Q~ 67'~ _,  + Q.  6?'. + Q.+ 6c.-' + t = 6(~ (54) 

A similar procedure with Eqs. (51)-(53) leads to the algebraic equat ion for 
all higher-order differentiation 67(;): 

6c,, + Q ,  -(i) n ~ C n -  I ~ c , ) +  1 Q~- "(;) + Q , - " )  + = 67~ i - ' )  (55) 

Note  that  67 (i) depends on 67 (;-~). In order to solve 67 "), we treat 6 ? " -  ~) 
as an initial condition. When i = 1, we have Eq. (54). The general equat ion 
that we need to solve can be expressed as 

Q~d, ,_ ,  + a , ,d .  + Q + d .  +, = e.  (56) 

where 
d,, ~-(o i 6 ~  i- 1) = 0 r  n , e n  = 

Define the ansatz d ~ + l = S ~  +d~+a, ,+~ and assume that  d u + ~ =  
d N + 2 . . . . .  O. When n = N, 

+ S u - ,  = - ( Q u ) - '  Q~r 
(57) 

a u =  ( Q u ) - '  eu 

Inserting this ansatz in Eq. (54). we obtain the following recurrence rela- 
tions: 

S + ,  = - ( Q . +  Q + S  + ) - '  Q ;  (58a) 

a = ( Q . + Q + S + )  - '  ( e . . - Q + a , , + ~ )  (58b) 

Finally, we have all of the matrix elements 

d o  ~ a 0 

d, = S g  do + a, (59) 

d 2 = S + d l  +a2 
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Since the inverse matrix of ao = (Qo + Q~S~ )-1 (eo-  Q~al) in Eq. (58b) 
with n = 0 is divergent, how do we find do or ao? 

The first two elements of Eq. (58) are 

Qodo + Q~ di =eo 

dl =S~Qo+al 

i.e., 

Qodo + Q~ (Sg do + a, ) = eo 

(Qo + Q~ S~ ) do = eo - Qga, 

(60a) 

(60b) 

Conservation of probability implies that the first component of eo (i.e., el.o) 
is zero. Note that we use 6Q instead of using Q. The component form of 
Eq. (60b) has the structure 

o o olr.,.ol [o l 
0 0 x24//,201= e2.0 

x~, :<.  x ~  X,.lla, o I ]e3.o / 
Lx41 X42 X43 x,ln_ll_d4.o..l Le4,o/ 

(60c) 

From the probability conservation with the definition of 

( x -  �89 
Pii(x' t) + P22(x' t)=.=o ~ a'+ (t)r" t - - - - ~ )  (61) 

we obtain 

I~ (pll(X, t)+P22(x, t))=(2n)l/4 a~(t) = 1 
- -  o o  

(62a) 

i.e., 

a~ (t) = (2n)-  i/4 = const (62b) 

From the Laplace transform of the probability conservation 

dte -~' dx(pll +P22)= dte-~'[(2rQI/4a~(t)] 
- o o  

1 
S 

(63) 
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along with the equilibrium condit ion (2g) 1/4 a~- (t = c~) = 1, we have 

f :  f ~  (x--�89 I l [ (2n) , /4a:( t=~)  ] 6?~~ d te - "  -o~dxag( t ) r" \  ~ J-s 
= 0 (64) 

This implies that  all of the higher-order terms vanish, i.e., 6?]i~o(S) = 0, and 
dl,o = 0 in Eq. (56) for any i. 

Equat ion (60c) with dl,o = 0 can easily be solved. 
For  the s tat ionary solution, i.e., e , = 0  for all n, we need to solve 

Q,Tc._I +Q,,c.+Q+c,,+l = 0 .  Let S.=c.+ffc,,; then we have 

S . =  - [ Q . + ,  + Q + _ , S . + I ] - '  Q~-+, (65a) 

c. = S._ l "'" Soco (65b) 

Here we truncate the system after the N th  term (Su+~ =Su+2 . . . . .  0 
and omit  the equations with n > N + 1). 

How do we find the initial value %? 
When n = 0, we have 

Qoco+Qgcl=O 

i.e., 

[Qo + Q~So] Co = 0 (66) 

It can be written in componen t  form as ( % =  [Ro, o, Rl.o, Rz,o, R3.o] r) 

i o o OiFRo.ol 
o o  llR,.ol=o 
x x  llR .ol 
x x x J L R 3 , o /  

(67) 

The combinat ion  of the normalizat ion condition of Ri, o and Eq. (67) leads 
to the solution of Co along with the fact that Ro, o = a ~ - ( ~ ) =  (2rQ -1/4, i.e. 
Ro.o should be rescaled to (2n) -1/4. The moments  which correspond to 
high frequency are easy to find. The Laplace t ransform of the basis set 
expansion of the populat ion fluctuation is 

fo F 6(2(s) = dt e - "  dx 6p(x, t) 

f? = x /~  (2g) TM dt e - ~' 8ao(t) 

= ~ /2  (2~) 1/4 6~o(S) (68) 

822/74/3-4-13 
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From Eq. (46), the coeff• equation can be written in matrix notation 
a s  

0 
-~ 6a(t) = M 6a(O), a = (a~, ao ,  b~-, b o ;...)r (69a) 

i.e., 

6a(t) --- e M' 6a(O) (69b) 

Inserting Eq. (69b) in Eq. (68), we obtain 

6Q(s) = x/~ (2n) TM f o  at e - ( s -  M), Oa(O) 

1 ~  1 i 
= ; i~O -~" ]'s - -  (70) 

Then we obtain all of the high-frequency moments as 

~i = (2x) TM X/~ Mi 6a(0) (71) 

The moments can be solved successively, i.e., 

/a, = x//2 (2x) TM 6a(O) 

#2 = M/~ (72) 

The method that is developed in this paper to solve the generalized 
moments relies on the useful feature that M is a block tridiagonal matrix, 
where the blocks are 4 x 4 matrices, corresponding to the four coefficients 
a~, b/~ for a given i. 

4. N U M E R I C A L  RESULTS 

By using the method that we developed in ref. 10 and this paper, most 
of the long-time and short-time behavior of the nonadiabatic transition 
reaction can be obtained. We will compare the numerical calculation of the 
exact Zusman equation with the analytical result in this section. 

4.1. Init ial  Condi t ion  

In this section, we show the effects of temperature, solvent dynamics, 
delocalization transition, electronic coupling, and transient time with 
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Fig. 2. Population in well 2 as a function of delay time. In all of these curves we have h~oL = 
100cm -l ,  2.=20, T=3(Y3K, a =  10, x~= --2, ( 0 )  endothermic normal regime S=16.68, 
P = 6,256; ( [ ] )  endothermic activationless regime S = 6.256, P =  6.256; ( � 9  endothermie 
inverted regime S=4.17,  P=3.128; (V)  exothermic activationless regime S=6.256, 
P = -6.256; ( �9 ) exothermic inverted regime S =  2.346, P =  -6.256. 

1.0 i I i 

0.0 p i L 
0 2o 4o 6o 80 

t/~- L 

Fig. 3. Population in well 2 as a function of delay time. The effect of the electronic coupling 
constant changes the delocalization width and increases the transition rate. The parameters 
that we used are htoL=100cm -z, 4=20;  T = 3 0 0 K ;  x i = - 2 ;  ( �9  a = 5 ;  (O)  a = l D ;  
(~7) a =  15. 
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0 20 40 60 80 100 
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Fig. 4. The temperature effect on the population in well 2 as a function of delay time. 
We choose the parameters h tnt=I00cm -I, 2=20, a=10, x , = - 2 ;  (~7) T=I00K;  
(O) T=300 K; (O) T=500 K. 

1 , 0  i I I 
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0.0 
0 20 40 60 
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Fig. 5. Solvent dynamic effects on the population in well 2 as a function of delay time. 
We use the parameters htoL= 100cm -1, T= 300 K, a=  10, xi= -2 ;  (~7) 2=50; ( 0 )  ,;, =40; 
( o )  ~ =  1o. 
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Fig. 6. Effect of transient time (t*) in the activationless regime. The initial position is 
changed from -2 ,  - 4  to -6 .  We choose the parameters hco L = 100 cm -~, T= 300 K, a = 10, 
2=60; (~7) xi= -2,  t* =0.4; (0 )  xi= -4,  t*= 1.15; (O) xi= -6,  t* =2.5. 

f a r - f rom-equ i l ib r ium init ial  d i s t r ibut ion .  Since the difference be tween  del ta  
ini t ia l  d i s t r i b u t i o n  a n d  G a u s s i a n  ini t ia l  d i s t r i bu t ion  is small ,  we on ly  show 
the del ta  ini t ial  d i s t r ibu t ion .  Five different regimes are shown  in Fig. 2. The  
p robab i l i ty  d i s t r i bu t ion  in well 2 is o b t a i n e d  by 

Q2(t) = [1 - (2n)  1/4 a o ( t ) ]  (73) 

The  expans ion  coefficient a o ( t  ) can  be o b t a i n e d  by so lv ing  Eq. (46) with 
the Bu l i r sch -S toe r  m e t h o d  ~1~) to in tegra te  ou t  4 x n  ( n = 2 0 0 )  f irs t-order 
differential  equa t ions .  Fig. 3 shows the effect of  the e lectronic  coup l ing  

T a b l e  I. C o m p a r i s o n  o f  A p p r o x i m a t e  a n d  E x a c t  V a l u e s  o f  T O a n d  T 1 ~ 

T0 "(1 

S P Analytic Numerical Analytic Numerical 

1.68 6.2.56 1.38 1.35 (1.02) 37.33 34.876 (1.07) 
6.256 6.256 0.525 0.51 (1.03) 4.5 4.23 (1.06) 
4.17 3.128 1.68 1.62 (1.04) 11.61 10.5 (1.10) 
6.256 -6.256 9.23 8.9 (1.04) 75.7 69.35 (1.09) 

~htoL= lOOcm -~, T=3OOK, xi=--6 ,  a =  10, 2=20. Values in parentheses are the ratios 
�9 an/~'num. 
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constant in the activationless regime. The population increases rapidly in 
the short-time regime as a is increased. It shows that the delocalization 
width is increased as a is increased, because the temperature is in the low- 
temperature regime of the transition rate [see, for example, Eq. (38)]. In 
Fig. 4, the population in well 2 increases as the temperature is decreased. 
In Fig. 5, it is remarkable that the friction slows down the transition rate 
in the activationless regime and the effect isexplicit before the equilibrium 
state is reached. Solvent dynamic effects make the transition localized. In 
Fig. 6, we show the effect of transient time in the activationless regime. The 
transient time, which is the time scale required for the initial distribution 
to relax to a sufficient population at the bottom of well 1, increases with 
increasing xi. 

4.2. Average Survival Time and Mean First Passage Time 

The comparison of the numerical solution of Zo and T~ with the 
approximate analytic formulas given in (28) and (29) is presented in 
Table I. The parameters were chosen to correspond to the first four curves 
in Fig. 2. The effects of delocalization, temperature, solvent dynamics, and 
initial distribution are given in Table II. The diffusion rate constants ko~ 
and ko2 are obtained by direct integration of Eq. (33). The diffusion 
moment k ini is obtained by integration of Eq. (34). The nonadiabatic rate I ,DI  

constants k~ 2 and k ~  are defined by Eq. (32). 
Table I shows that for an initial position xi inside the transition region 

of sufficiently inverted regime the averaged survival time and mean first 

Table II. Effect of Initial Distribution. Electronic Coupling Constant, 
Temperature, and Solvent Dynamics on T O and T1 ~ 

a T 2 x i 3 o ~l 

5 300 20 - 6 26.64 699.89 

10 300 20 - 6 8.9 69.34 
15 300 20 - 6 5.61 25.02 

10 100 20 - 6  4.8 17.57 

10 300 20 - 6 8.9 69.34 

10 500 20 - 6 12.9 153.84 
10 300 10 - 6 5.85 27.48 

10 300 40 - 6 14.89 208.4 

10 300 50 --  6 17.87 305.58 

10 300 20 - 2 7.87 60.46 

10 300 20 - 4 8.51 65.88 

10 300 20 - - 6  8.9 69.35 

qh tOL= 1 0 0 c m  -1, T =  300 K,  P =  - 6 . 2 5 6 ,  S =  - 6 . 2 5 6 .  
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passage t ime cannot be broken up into the consecutive steps of  diffusion in 
the donor  well and surface crossing as shown in ref. 10. For the initial 
posit ion outside the transition region and the regime not sufficiently 
inverted, Table I shows a good approximation of our analytic expression. 
The important feature is that the nuclear tunneling effect is included in kA, A. 

If we use the localized transition rate .~t"rSTNA, the results are completely 
incorrect. 
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0 002 i i i 

/ X  
0001 I R 
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0.000 i 
0 210 40 610 

t/ 'r L 

Fig. 7. Comparison between numerical (@) and analytical (O) calculations of (a) popula- 
tion and (b) reaction rate in well 2 with two relaxation times 2~ -~ =4.54 and 2f t =25.123. 
Both plots correspond to hCOL= 100cm -1, 2=20, T=300 K, x j= - -2 ,  a =  10, S=  16.68, 
P = 6.256. 
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4.3. Multiexponential Relaxation 

We compare the numerical calculation of Q(t) and Q(t) from the 
approximate analytic formula (27) with the parameters based on four 
different regimes. The factors of the approximate analytic formula are 
evaluated by using a method similar to Section 4.2. 
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Fig. 8. Comparison between numerical (O)  and analytical (O) calculations of (a) popula- 
tion and (b) reaction rate in well 2 with two relaxation times 2i -~ =4.28 and 22 ~ =6.67. Both 
plots correspond to htOL= 100cm - t ,  ) .=20,  T = 3 0 0  K, x , =  - 2 ,  a =  10, S=6.256,  P=6.256.  
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In Figs. 7, 8, 9 and 10, the long-time behavior of a two-relaxation-time 
description is very satisfactory. The short-time behavior can be fitted very 
well in the exothermic activationless regime. The reaction rate (d/dO Q2(t) 
at t = 0  shows that a multiexponential decay time is needed in the 
nonadiabatic transition reaction. More than two-exponential decay in 
the normal and inverted regimes needs further study. For the normal and 

0 050 

0 025 
o 

0 ooc 

i i i 

/ S  . . . . . .  

(a) 

I I I 

0 20 40 60 

t/'r~. 

. 0  

000r  
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0.000 
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t / r  L 

Fig. 9. Comparison between numerical (Q) and analytical ( O )  calculations of (a )  p o p u l a -  

t ion  and (b) reaction rate in well  2 with two relaxation times 2~-1=  2.32 a n d  ).~-' = 7.47. Both 
plots correspond to hOJL = 100 cm - ~, ). = 20, T = 300 K,  x~ = - 2 ,  a = 10, S = 4.17, P = 3.128. 



inverted regimes, the reaction rate cannot be fitted well at short time. This 
means that more short relaxation time scales should be included. 

In conclusion, we have developed a systematic way to calculate the 
generalized moments with consecutive approximation. A new method is 
developed to simulate the numerical result. This method is much easier 
than the solution of the differential equation by the grid point method. 
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Fig. 10. Comparison between numerical ( � 9  and analytical ( �9 calculations of (a) popula- 
tion and (b) reaction rate in well 2 with two relaxation times ,1~-i= 1.97 and ,1~-1=7.38. 
Both plots correspond to hCOL=10Ocm -~, ,l=20, T=300K,  x i= - -2 ,  a= lO,  S=6.256, 
P = -6.256. 
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